41 research outputs found

    The left intraparietal sulcus modulates the selection of low salient stimuli

    Get PDF
    Neuropsychological and functional imaging studies have suggested a general right hemisphere advantage for processing global visual information and a left hemisphere advantage for processing local information. In contrast, a recent transcranial magnetic stimulation study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b] demonstrated that functional lateralization of selection in the parietal cortices on the basis of the relative salience of stimuli might provide an alternative explanation for previous results. In the present study, we applied a whole-brain analysis of the functional magnetic resonance signal when participants responded to either the local or the global levels of hierarchical figures. The task (respond to local or global) was crossed with the saliency of the target level (local salient, global salient) to provide, for the first time, a direct contrast between brain activation related to the stimulus level and that related to relative saliency. We found evidence for lateralization of salience-based selection but not for selection based on the level of processing. Activation along the left intraparietal sulcus (IPS) was found when a low saliency stimulus had to be selected irrespective of its level. A control task showed that this was not simply an effect of task difficulty. The data suggest a specific role for regions along the left IPS in salience-based selection, supporting the argument that previous reports of lateralized responses to local and global stimuli were contaminated by effects of saliency

    Reflexive and preparatory selection and suppression of salient information in the right and left posterior parietal cortex

    Get PDF
    Attentional cues can trigger activity in the parietal cortex in anticipation of visual displays, and this activity may, in turn, induce changes in other areas of the visual cortex, hence, implementing attentional selection. In a recent TMS study [Mevorach, C., Humphreys, G. W., & Shalev, L. Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740-742, 2006b], it was shown that the posterior parietal cortex (PPC) can utilize the relative saliency (a nonspatial property) of a target and a distractor to bias visual selection. Furthermore, selection was lateralized so that the right PPC is engaged when salient information must be selected and the left PPC when the salient information must be ignored. However, it is not clear how the PPC implements these complementary forms of selection. Here we used on-line triple-pulse TMS over the right or left PPC prior to or after the onset of global/local displays. When delivered after the onset of the display, TMS to the right PPC disrupted the selection of the more salient aspect of the hierarchical letter. In contrast, left PPC TMS delivered prior to the onset of the stimulus disrupted responses to the lower saliency stimulus. These findings suggest that selection and suppression of saliency, rather than being "two sides of the same coin," are fundamentally different processes. Selection of saliency seems to operate reflexively, whereas suppression of saliency relies on a preparatory phase that "sets up" the system in order to effectively ignore saliency

    Hierarchical processing in Balint’s syndrome : a failure of flexible top-down attention

    Get PDF
    Patients with Balint’ s syndrome are typically impaired at perceiving multiple objects simultaneously, and at evaluating the relationship between multiple objects in a scene (simultanagnosia). These deficits may not only be observed in complex scenes, but also when local elements of individual objects must be integrated into a perceptual global whole. Thus, unlike normal observers, patients with simultanagnosia typically show a bias towards the local forms, even to the extent that they cannot identify the global stimuli. However, we have previously shown that global processing is still attainable in Balint patients in certain scenarios (e.g., when local elements are unfamiliar). This suggests that in addition to a possible perceptual deficit that favors the local elements in these patients, impaired attentional control may be at the core of their unique performance. To test this hypothesis we manipulated the perceptual saliency of the local and global elements in a compound letter task so that it included global-more-salient or local-more-salient displays. We show that a Balint patient was able to accurately identify both global and local targets as long as they were the salient aspect of the compound letter. However, substantial impairment was evident when either the global or local elements were the less salient aspect of the compound letter. We conclude that in Balint’ s syndrome there is a failure of flexible top-down attention both in biasing attention away from salient irrelevant aspects of the display (salience-based-selection) and in impaired disengagement from irrelevant but salient items once they have been selected
    corecore